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We use a power expansion representation of plane-elasticity complex potentials due to Kolossov and
Muskhelishvili to compute the elastic fields induced by a localized plastic deformation event. Far from its
center, the dominant contributions correspond to first-order singularities of quadrupolar and dipolar symmetry
which can be associated, respectively, with pure deviatoric and pure volumetric plastic strain of an equivalent
circular inclusion. By construction of holomorphic functions from the displacement field and its derivatives, it
is possible to define path-independent Cauchy integrals which capture the amplitudes of these singularities.
Analytical expressions and numerical tests on simple finite-element data are presented. The development of
such numerical tools is of direct interest for the identification of local structural reorganizations, which are
believed to be the key mechanisms for plasticity of amorphous materials.
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I. INTRODUCTION

The plasticity of amorphous materials has motivated an
increasing amount of study in recent years. In the absence of
an underlying crystalline lattice in materials such as foams,
suspensions, or structural glasses, it is generally accepted
that plastic deformation results from a succession of local-
ized structural reorganizations �1–4�. Such changes of local
structure release part of the elastic strain to reach a more
favorable conformation and induce long-range elastic fields.
The details of such local rearrangements and of the internal
stress they induce obviously depend on the precise structure
of the material under study, and its local configuration. How-
ever, the important observation is that outside the zone of
reorganization a linear elastic behavior prevails. Therefore,
elastic stresses can be decomposed onto a multipolar basis
and, independently of the material details, it is possible to
extract singular, scale-free, dominant terms which can be as-
sociated with a global pure deviatoric or pure volumetric
local transformation of an equivalent circular inclusion. In
particular, the elastic shear stress induced by a localized plas-
tic shear exhibits a quadrupolar symmetry. This observation
has motivated the development of statistical models of amor-
phous plasticity at the mesoscopic scale based upon the in-
teraction of disorder and long-range elastic interactions
�5–8�. In the same spirit, statistical models were also recently
developed to describe the plasticity of polycrystalline mate-
rials �9�. Several numerical studies have been performed re-
cently to identify these elementary localized plastic events in
athermal or molecular dynamics simulations of model amor-
phous materials under shear �10,11�.

The question remains of how to identify and analyze these
transformation zones. In analogy with the path-independent
Rice J integral �12� developed to estimate the stress intensity
factor associated with a crack tip stress singularity, we aim
here at capturing the stress singularity induced by the local
plastic transformation which can be treated as an Eshelby
inclusion �13�. In two dimensions, we develop a simple ap-

proach based upon the Kolossov-Muskhelishvili �KM� for-
malism of plane elasticity �14�. This is an appealing pathway
to the solution since these zones will appear as poles for the
potentials, and hence Cauchy integrals may easily lead to
contour integral formulations which are independent of the
precise contour geometry, but rather rely on its topology with
respect to the different poles that are present.

Although these techniques have been mostly used in the
context of numerical simulations in order to estimate stress
intensity factors from finite-element simulations, they are
now called for to estimate stress intensity factors from ex-
perimentally measured displacement fields from, e.g., digital
image correlation techniques. In this case, interaction inte-
gral techniques �15� or least squares regression �16� tech-
niques have been applied. Noise-robust variants have also
been proposed �17�. These routes could also be followed in
the present case.

Though the present work is restricted to two dimensions
due to the complex potential formulation, similar questions
can be addressed for the three-dimensional version of this
problem using the same strategy but a different methodology.
In the following, we briefly recall the KM formalism, we
give analytic expressions for the contour integrals allowing
us to capture the singular elastic fields, and we present a few
numerical results based on a finite-element simulation sup-
porting our analytical developments.

In Sec. II, we present the theoretical basis of our approach
in terms of singular elastic fields, while in Sec. III we intro-
duce the contour integral formulation. In Sec. IV, a numerical
implementation based on finite-element simulations is pre-
sented, together with the results of the present approach. This
application allows us to evaluate the performance and limi-
tations of the contour integral procedure and check the det-
rimental effect of discreteness. Section V presents the main
conclusions of our study.

II. POTENTIAL FORMULATION

In two dimensions, the Kolossov-Muskhelishvili poten-
tials can be used to write the elastic stress and displacement
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fields U and � �14�. Using a complex formulation, we intro-
duce the elastic displacement U=Ux+ iUy and the stress ten-
sor field through two functions, the real trace S0=�xx+�yy
and the complex function S=�yy −�xx+2i�xy. In the frame-
work of linear elasticity, the balance and compatibility equa-
tions can be rewritten as

S0,z − S,z̄ = 0, �1�

S0,zz̄ = 0, �2�

where z=x+ iy is the complex coordinate and the notation A,x
is used to represent the partial derivative of field A with
respect to coordinate x. Note that we assumed zero surface
density force and that Eq. �2� is here the classical Beltrami
equation which expresses the kinematic compatibility condi-
tion in terms of stress. The general solution to these equa-
tions can be obtained through the introduction of two holo-
morphic functions � and �, called the KM potentials. The
displacement and the stress field can be written �14�

2�U = ���z� − z���z� − ��z� , �3�

S0 = 2����z� + ���z�� , �4�

S = 2�z̄���z� + ���z�� , �5�

where � is the elastic shear modulus and �= �3−4�� for
plane strain and �3−�� / �1+�� for plane stress, � being the
Poisson ratio.

III. PLASTIC INCLUSION AND SINGULARITY
APPROACH IN TWO DIMENSIONS

A. Singular terms associated with plastic inclusion

This KM formalism can be applied to two-dimensional
inclusion problems �18,19�. Let us consider the case of a
small inclusion of area A experiencing plastic deformation
and located at the origin of the coordinate system z=0. It is
assumed that the stress is a constant at infinity. Outside the
inclusion, the KM potentials can be expanded as a Laurent
series as

��z� = �outz + �
n=1

	
�n

zn , ��z� = 
outz + �
n=1

	
�n

zn . �6�

The linear terms can be easily identified as corresponding to
uniform stresses while constant terms �omitted here� would
lead to a rigid translation. It can be shown in addition that the
dominant singular terms �1 /z and �1 /z can be associated
with the elastic stress induced by the plastic deviatoric and
volumetric strain of an equivalent circular inclusion of area
A. That is, considering a circular inclusion experiencing a
plastic shear strain �p and a plastic volumetric strain �p we
have �18�

�1 =
2i�A�p

�� + 1�
, �1 = −

2�A�p

�� + 1�
. �7�

In particular, for a pure shear plastic event we obtain a qua-
drupolar symmetry:

�xy = −
2�p�

� + 1

A
r2cos�4�� . �8�

Note that we have in general to consider a complex value of
�p to include the angular dependence of the principal axis. In
contrast, the amplitude �1 is a real number �note that the
imaginary part would correspond to a pointlike torque ap-
plied at the origin�.

B. Generic character of the expansion

Because of the well-known property of Eshelby circular
inclusion, the above expansion limited to the �1 and �1
terms only is the exact �outer� solution of a uniform plastic
strain distributed in the inclusion, and vanishing stress at
infinity. However, one should note that this result is much
more general. Indeed, it is seen that the physical size of the
inclusion does not enter into the solution except through the
products A�p and A�p. Therefore, a smaller inclusion having
a larger plastic strain may give rise to the very same field,
provided the products remain constant. Thus one can con-
sider the prolongation of the solution to a pointlike inclusion
�with a diverging plastic strain� as being equivalent to the
inclusion.

Then from the superposition property of linear elasticity, a
heterogeneous distribution of plastic strain �p�x� in a com-
pact domain D will give rise to such a singularity with an
amplitude equal to

�A�p�eq =� �
D

�p�x�dx �9�

and the same property would hold separately for the volu-
metric part. As a particular case, one finds a uniform plastic
strain for an inclusion of arbitrary shape.

This is the key property that allows us to capture the
equivalent plastic strain of an arbitrary complex configura-
tion, for the above mentioned application to amorphous me-
dia. In fact, this is even the only proper way of defining the
plastic strain for a discrete medium as encountered in mo-
lecular dynamics simulations. The far-field behavior of the
displacement and stress field can be accurately modeled, and
without ambiguity, by a continuum approach, and thus the
above result will hold. In contrast, locally, the large-scale
displacement of several atoms may render difficult the direct
computation of the equivalent plastic strain experienced in
such an elementary plastic event.

Let us, however, stress one difficulty: As the above argu-
ment ignores the details of the action taking place within the
“inclusion,” plasticity has to be postulated. However, a dam-
aged inclusion, where the elastic moduli have been softened
by some mechanism, or even a nonlinear elastic inclusion at
one level of loading, would behave in a similar way to the
above plastic inclusion. Obviously, to detect the most rel-
evant physical description, one should have additional infor-
mation, say about unloading. If the above amplitudes remain
constant during unloading, plasticity would appear appropri-
ate. If the amplitude decreases linearly with the loading, then
damage is more suited. Finally, if the amplitudes varies re-
versibly with the loading, nonlinear elasticity might be the
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best description. Thus, although one should be cautious in
the interpretation, local damage detection from the far field
may also be tackled with the same tools.

C. Path-independent contour integrals

In two dimensions, this multipole expansion formalism in
the complex plane suggests resorting to contour integrals to
extract the singularities. However, the displacement field is
not a holomorphic function and cannot be used directly for
that purpose. The strategy of identification of the singulari-
ties �n and �n thus consists of expressing the potentials from
the displacement field and its derivatives in order to extract
the singularities via Cauchy integrals. We now simply ex-
press the displacement field and its derivatives:

2�U = ���z� − z���z� − ��z� , �10�

2�U,z = ����z� − ���z� , �11�

2�U,z̄ = − z���z� − ���z� , �12�

2�U,zz̄ = − ���z� . �13�

This gives immediately

���z� =
2�

� − 1
��U,z + U,z� , �14�

���z� = − 2�U,zz̄ = −
�

2
�2U , �15�

���z� = − 2��U,z̄ −
z̄

4
�2U� . �16�

Note that, except for a multiplicative constant, the two last
expressions are independent of material properties. In light
of the expansion �6� of � and � in Laurent series, if a coun-
terclockwise contour integration is considered along a path
C, Cauchy residues can be formed as

�n =
i�

4n�n + 1��C
zn+1�2Udz , �17�

�n =
i�

n
�

C
zn�U,z̄ −

1

4
z̄�2U�dz . �18�

These expressions can thus be obtained from the sole knowl-
edge of the displacement field, a quantity which can be ac-
cessed from experiments, or from atomistic simulations. In
the case of first-order singularities �see Eq. �7��, the residue
term thus depends only on the local plastic deformation �size
and amplitude of deformation� and on the Poisson ratio � of
the material.

Reverting to Cartesian coordinates, where the contour is
expressed as a function of the curvilinear abscissa s as
(x�s� ,y�s�), the above expression can be written

�1 =
�

8
�

C
�− 2�xy� + i�x2 − y2����Ux,xx + Ux,yy�

− i�Uy,xx + Uy,yy���dx

ds
+ i

dy

ds
�ds ,

�1 =
�

4
�

C
	2�ix − y���Ux,x − Uy,y� − i�Uy,x + Ux,y��

− �i�x2 + y2���Ux,xx + Ux,yy − i�Uy,xx + Uy,yy��


��dx

ds
+ i

dy

ds
�ds . �19�

IV. NUMERICAL IMPLEMENTATION

The ultimate goal of such a method would be to analyze
numerical results obtained from molecular dynamics simula-
tions of amorphous plasticity where such local structural re-
organizations are expected to take place. This obviously
raises the question of a well-defined method for writing the
continuous displacement field from the data on the discrete
displacements of particles �20� and more generally the ques-
tion of the sensitivity to noise of the above expressions. The
first point is beyond the scope of the present work and we
leave it for later studies. We thus focus on the more restricted
question of the numerical implementation and its efficiency
in the case of artificially noise-corrupted displacement data.

The method relies on contour integrations of derived
fields of the displacement. The latter point induces a priori a
strong sensitivity to noise. To limit such effects, first and
second derivatives are extracted via an interpolation of the
local displacement field by polynomial functions of the spa-
tial coordinates. Moreover, the path independence of the con-
tour integrals allows one to perform spatial averages. We
explore in the following the efficiency of this method for
noisy data.

A. Numerical generation of elastic fields induced by plastic
inclusions

Displacement fields are computed numerically using a
finite-element code, with square elements and bilinear shape
functions 	1,x ,y ,xy
. Plane stress conditions of two-
dimensional elasticity are used. The domain is a 150�150
square. Stress-free conditions are enforced all along the do-
main boundary. The Poisson ratio of the material is �=0.20.
Since no quantitative values of the stress are used, the value
of the Young’s modulus is immaterial.

A plastic strain is implemented at the scale of one single
isolated element. Within this element, the strain is the sum of
a plastic uniform strain chosen at will, and an elastic strain.
The latter is computed by solving for the two-dimensional
elastic problem, ensuring force balance and kinematic conti-
nuity at all nodes including the nodes of the plastic element.
The chosen kinematics is too crude to solve the elastic prob-
lem with a good accuracy at the scale of one single element.
However, remote from the inclusion, the elastic perturbation
is well accounted for, and since all our computations are
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based on paths lying at a distance from the inclusion, the
formalism should be applicable. A single element allows us
to have a maximum ratio between inclusion and domain size.
The price to pay for this crude local description is that the
quantitative estimate of A�p and A�p will differ slightly
from the theoretical expectation. Nevertheless the path inde-
pendence �size, shape, center, etc.� is expected to hold.

We limited ourselves to such a description in order to
mimic the difficulties one may face when having to deal with
discrete element simulations. Indeed, the chosen finite-
element shape functions do not allow us to use this descrip-
tion strictly speaking in order to compute second-order dif-
ferential operators on the displacement, since the gradients of
the latter are not continuous across element boundaries.
Therefore, a regularization will be called for, as detailed be-
low.

The choice of a regular square lattice is obviously over-
simplified compared with the case of the random lattices
associated with atomistic simulations. However, as the x and
y directions are obviously equivalent for square elements and
as linearity is preserved by the finite-element formulation,
this formulation should not introduce any breaking of sym-
metry. More specifically, the displacement field induced by a
quadrupole of principal direction off axis can be obtained by
a linear superposition of x and y components of the displace-
ment field induced by a quadrupole aligned with the axis
weighted by the sine and cosine of the quadrupole angle.

Finally, the finite size of the system is also a specific
difficulty encountered in practice, whereas the above argu-
ment uses the assumption of an infinite domain. However,
such a boundary condition should not induce additional poles
within the domain, and can be considered as a common prac-
tical difficulty encountered for all practical uses of this tool.
All these arguments are possible causes of deviation from the
theoretical expectation of path independence, and it thus mo-
tivates a detailed study of the method stability, robustness,
and accuracy.

Two test cases are studied: �I� a central inclusion experi-
encing a shear strain �p=1 �because of linearity, the actual
amplitude is meaningless� along the x axis; �II� a central
inclusion experiencing a volumetric contraction �p=−1. A
map of the displacement fields Uy in case I is given in Fig. 1.

B. Interpolating displacement data

The key ingredient is to go from a continuous but nondif-
ferentiable displacement field obtained from the finite-
element simulation to an evaluation of the second derivative
at any point in the domain. The results presented below have
been obtained using the following procedure. A quadratic fit
is performed on a square centered on one node to extract the
first- and second-order derivatives, and the obtained values
are used to compute the integrals by quadrature. An alterna-
tive method has been tested: for an integration from �x ,y� to
�x+1,y�, a simple fit is performed of the 12 nodes ranging
from �x−1� to �x+2�, and from �y−1� to �y+1�, by the ten-
sor product of polynomials �1,x ,x2 ,x3� and �1,y ,y2� �12
functions�. Then the integral of all required quantities can be
computed. Estimates of derivatives using Fourier series with
and without low-pass filtering have also been performed. All
methods give similar results provided that the area of the
region used for interpolation �or filtering� is comparable.

C. Path independence

We first check the path independence of the contour inte-
gral in the cases I and II of isolated inclusions. For that
purpose, we use three families of contours, square �A�, cross
�B�, and rectangular �C� shaped respectively as shown in Fig.
1. The size of these contours as well as their center can be
varied. Figure 2 gives a summary of the results. For the three
kinds of contours, we show the real and imaginary parts of
the residues corresponding to Eq. �17�. Note that the numeri-
cal results have been normalized according to the theoretical
expectations �7� so that the expected numerical values are
�1= i ,�1=0 in case I �Fig. 2, left� and �1=0 ,�1=1 in case II
�Fig. 2, right�.

These numerical results can be considered as rather satis-
factory in terms of orientation and orthogonality between
modes �1 and �1: the measured values of quantities whose
expected value is zero remain typically below 10−2. When
compared to their theoretical values, �1

shear and �1
contraction ex-

hibit relative differences of around 5–10 %. Small fluctua-
tions �below 5%� can be found when the shape and size of
the contours are varied. We already commented on the fact
that the finite-element simulations are performed with a
single element for the inclusion, a procedure which is obvi-
ously not reliable in terms of accuracy, but which allows us
to have a large ratio between element and system size.

Another test of the numerical procedure is its dependence
on the sole topology, i.e., location of the inclusion inside or
outside the contour; we show in addition the dependence of
the measured values of �1 and �1 on the location of the
contour center. Figure 3 shows the singularity �1 measured
from the integration of displacement field II along a square
contour centered along the x axis. Results are normalized so
that the expected value of Re�1 is unity when the inclusion is
within the contour and zero elsewhere. The contour size is
M =20. We obtain the expected behavior: the values of Re�1
shift from zero to unity depending on whether the inclusion
is within or outside the contour. Significant fluctuations �10–
20 %� are, however, observed when the inclusion lies in the
vicinity of the contour.

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

A

B

C

FIG. 1. Map of the displacement field Uy induced by a plastic
shear strain of a central square element. The oriented paths indicate
contours for integration.
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Finally we test the dependence of the numerical method
on the material properties. In the determination of �1 and �1
�17� as residues, the need to resort to a second-order deriva-
tive of the displacement field is balanced by the fact that the
computation can be performed without any knowledge of the
elastic properties of the material. The lack of dependence of
the numerical procedure on the Young’s modulus is trivially
obtained due to the linearity of the finite-element method
�FEM� computation. In Fig. 4 we show the dependence of
the numerical results on the Poisson ratio. FEM computa-
tions have been performed on systems of size 100�100 with
stress-free boundary conditions and a central inclusion expe-
riencing a unit shear and a unit contraction, respectively. The
Poisson ratio was varied from 0.05 to 0.45 by steps of 0.05.
The results shown in the figure compare the numerical esti-
mates obtained for a square contour of size 40 centered on
the inclusion with the theoretical expectation �1=�1= �1
+�� /2. The numerical results show that the volumetric
strain is weakly dependent on the Poisson ratio, but the el-
ementary shear is more poorly estimated for a high Poisson
ratio.

V. DISCUSSION AND CONCLUSION

The proposed approach is based on an exact result and
hence theoretically establishes a parallel with other types of
elastic singularities �in particular the stress intensity factors
which characterize crack loadings� where similar path inte-
grals are well known. When tested on direct numerical simu-
lations, we could recover the main topological properties ex-
pected in this context: path independence and detection of
the absence or presence of a singularity within the contour.
However, the quantitative results proved more disappointing:
the method is rather imprecise in the determination of the
prefactor of the singularity and is more generally rather sen-
sitive to noise. The main cause is presumably the inconsis-
tent regularity of the displacement field solution �simple con-
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FIG. 2. �Color online� Normalized values of numerical estimates
�1 and �1 obtained for three families of contours, respectively
square, cross, and rectangle shaped, and of varying length L in the
case of a displacement field induced by the plastic shear strain �left�
or contraction �right� experienced by the central element of a square
lattice. Theoretical expectations are �1= i ,�1=0 �left� and �1

=0,�1=1 �right�.
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FIG. 3. �Color online� Normalized values of numerical estimates
�1 obtained for square contours of center �x0 ,0� and size M =20.
The expected behavior of Re�1 �unity when the inclusion lies
within the contour, zero otherwise� is represented by the bold line.
Other quantities are expected to be zero.
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FIG. 4. �Color online� Numerical estimates of ��1� and �1 ob-
tained for a central inclusion experiencing a unit shear and a unit
contraction, respectively, as a function of the Poisson ratio �. The
numerical results obtained in plane stress conditions for a system of
size 100�100 with stress-free boundary conditions are compared
with the theoretical expectation �1+�� /2.
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tinuity� with the need to resort to estimates of first- and
second-order differentials. A piecewise high-order polyno-
mial interpolation is operational for integrals over finite seg-
ments; however, from one segment to the next, first- and
second-order differentials will display a discontinuous char-
acter, which obviously affects the method and results. More-
over, being a path integral, the method does not take advan-
tage of the knowledge of the displacement field at all points
of a domain. To make the method more robust with respect
to noise, different approaches can be followed. One natural
way is to average the result over different contours, thus
transforming the contour integral into a domain integral. An
arbitrary weight average can also be considered, and hence
one could optimize the weight in order to achieve the least

noise sensitivity. Such a method was explored successfully
for cracks in Ref. �17�. Note finally that extensions to three
dimensions obviously require a different technique from
Kolossov-Muskhelishvili potentials and contour integrals;
however, a linear extraction operator acting on the displace-
ment field can still be computed to provide similarly the
equivalent plastic strain.
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